Evidence based medicine From discovery to market

Radhakrishna A.Sothiratnam MRCP(UK) Shah Alam, 10th June 2014

Agenda

- Chronic hepatitis C burden of disease
- Evolution of available treatments
- Limitations of current treatments
- What's new?

HCV Global Prevalence:

Pandemic with 170 million HCV-infected, 75% undiagnosed and marked genotypic distribution differences across countries and regions

Key Implications

- Response to therapy (Interferon-based) is low and varies by HCV genotype and subgenotype.
- New treatment regimens need to be developed to maximize efficacy, reduce toxicities associated with interferon and minimize duration of therapy.

HCV prevalence

	Malaysia	Singapore	Thailand	Vietnam
Country	29.6MM	5.3MM	67.0MM	87.8MM
population				
HCV	2.1%	Estimated at 0.5% (*KOL)	2.15%	2.9%
Prevalence	622M	26M	1.46MM	2.58MM
Potential	1 = 248M (39%)	1 = 20M (75%)	1a = 97M (6.7%) ¹¹	1a = 802M (31.15%)
Infected			1b = 390M (26.7%)	1b = 466M (17.8%)
Population				
Genotypes &	2 = 24M (4%)	2 & 3 = 6M (25%)	2a = 32M (2.2%)	
Sub-			2c = 32M (2.2%)	
genotypes				
(%)	3 = 342M (56%)		3a = 746M (51.1%)	3a = 51M (2.2%)
			3b = 32M (2.2%)	3b = 77M (3.0%)
	4 = 6M (1%)		6 = 130M (8.9%)	6a,e,I = 1.19MM (37.0%)

^{**}Based on 2013 population

Natural History

Natural History of HCV Infection

HCC = hepatocellular carcinoma

ESLD = end-stage liver disease

DiBisceglie et al. *Hepatology*. 2000;31(4):1014-1018.

Risk Factors for HCV

- Injection drug use (60%)
- Blood transfusion before 1992
- Multiple sex partners
- latrogenic (hemodialysis, re-use of vials, etc)
- Intranasal cocaine
- Piercing, tattooing, scarification
- Unknown (10%)

Evolution of Antiviral Therapy for Chronic HCV

What is Pegylation?

- Covalent attachment of polyethelene glycol to peptide
- Increases hydrodynamic size
- Prolonged circulation, delayed renal clearance
- PegIntron (12kd, Schering), Pegasys (40kd, Roche)
- Enzon pharmaceutical
 - Adenosine deaminase
 - Others: Neulasta (GCSF), doxorubicin

Side Effects of PegIFN/Ribavirin

"Interferon Man"

- Depression ranging from mild to suicidality
- Irritability, aggressive behavior
- Worsening of mania
- Fatigue
- Insomnia
- Myalgias, fever, flu-like symptoms
- Hair loss
- Cytopenias

Predictors of Virologic Response

Viral Factors

- Genotype
- Viral Load

Host Factors

- Age
- Cirrhosis
- Race
- Gender
- Weight
- Hepatic Fe Overload
- Coinfection (HIV, HBV)
- Steatosis
- Hyperinsulinemia

On-Treatment Viral Kinetics

DukeMedicine

Adapted from Yee H et al. American Journal of Gastroenterology 2012 Used with permission.

Kinetics and SVR: GT 1 (Pegasys + RVN)

Time	HCV RNA status				
Wk 4	Neg	<2 log	<2 log	Any	
Wk 12	Neg	Neg	>2 log	Any	
Wk 24	Neg	Neg	Neg	Pos	
SVR	91%	60%	43%	2%	

Ribavirin Prevention of Relapse

(Bronowicki et al., Gastroenterology 2006;131:1040-8) slide courtesy of JM Pawlotsky

Remaining questions

- Why doesn't IFN work in some patients?
- Is IFN necessary if you have two potent antivirals?
- How many antiviral targets are needed and how long is therapy needed?
- Target lipid metabolism?

What have we learnt so far?

Current interferon (IFN)-based therapies for HCV genotype (GT) 1 infection are associated with treatment-limiting toxicity and differing efficacy in patients with HCV GT 1a and GT 1b infection

ABT-450 is a potent NS3/4A protease inhibitor identified by AbbVie and Enanta

 Co-dosing of ABT-450 with ritonavir* (ABT-450/r) increases the peak, trough, and overall drug exposures of ABT-450, and also enables once daily dosing¹

Ombitasvir (formerly ABT-267) is a potent NS5A inhibitor

Dasabuvir (formerly ABT-333) is a non-nucleoside NS5B polymerase inhibitor

The mean maximum HCV RNA decline observed in patients receiving 3-day monotherapy with ABT-450/r, ombitasvir, or dasabuvir was >4 log₁₀ IU/mL, >3 log₁₀ IU/mL, and ~1 log₁₀ IU/mL, respectively²⁻⁴

^{*}Ritonavir does not have antiviral activity against HCV.

¹Menon R, et al. HepDART 2009; ²Lawitz E, et al. *J Hepatol*. 2012;56(suppl 2):S470. ³Lawitz E, et al. *J Hepatol*. 2012;56(suppl 2):S469-S470.

⁴Poordad F, et al. *J Hepatol*. 2012;56(suppl 2):S478.

SVR with Boceprevir and Telaprevir in HCV Genotype 1 Treatment-Naive and -Experienced Subjects

Poordad F, et al. *N Engl J Med.* 2011; 364:1195-1206. Bacon B, et al. *N Engl J Med.* 2011; 364:1207-1217. Jacobson IM, et al. *N Engl J Med.* 2011; 364:2405-2416. Zeuzem S, et al. *N Engl J Med.* 2011; 364:2417-2428. Sherman KE, et al. *N Engl J Med.* 2011; 365:1014-1024.

TARGETING MULTIPLE DOMAINS OF HCV TO INCREASE EFFICACY AND REDUCE RESISTANCE FOR AN IFN-FREE REGIMEN

Likely need combination of two or three drugs hitting separate targets

- Avoid cross-resistance and overlapping toxicities
- Maintain a high barrier to resistance
- Simple regimen to maximize adherence

Drug Development is NOT Easy

Clinical Trials - Timeline for new drug development

	Preclinical Testing	Ph ase I	Phase II	Phase III	FDA	Total Years	Phase IV
Years	3.5	1	2	3	2.5	12	Post- marketing
Test Population	Laboratory & animal studies	20 to 80 healthy volunteers	100 to 300 patient volunteers	1000 to 3000 patient volunteers	Review process/ Approval		
Purpose	Assess safety and biological activity	Determine safety and dosage	Evaluate effectiveness, look for side effects	Verify effectiveness, monitor adverse reactions from long- term use			

-one for every 1,000 drugs makes it into humans

-One in 5 receive FDA approval

HCV DIRECT ACTING
ANTIVIRALS CLINICAL
DEVELOPMENT
PROGRAMS

DAAs in Development at AbbVie

3D HAS A HIGH GENETIC BARRIER TO RESISTANCE

Earlier *in vitro* studies have demonstrated that combination of ABT-450, ABT-267, and

ABT-333 are needed to completely eliminate colony growth

	ABT-450	ABT-267	ABT-333
10X EC ₅₀			
(10 ⁵ cells)			
Frequency of resistant colonies	>1%	~ 0.5%	>1%
107 107 50	ABT-450 + ABT-267	ABT-450 + ABT-333	ABT-267 + ABT-333
10X + 10X EC ₅₀ (10 ⁶ cells)			
Frequency of resistant colonies	0.0011%	0.0045%	
ABT-450 + AB	5X + 5x + 5X EC ₅₀	10X + 10x + 10X EC ₅₀	
ABT-333			
(10 ⁶ cells			
Frequency of recolonies	<0.0001%	<0.0001%	

EC_{50} = median effective concentration.

Genotype 1a replicon

There were no surviving colonies (<0.0001%) when all 3 drugs were used in combination, including at low concentrations (5X above respective EC_{50} s).

Pilot-Matias, T, et al. EASL 2012, April 18-22, 2012, Barcelona, Spain. Poster #867

AbbVie's HCV Clinical Development Program

PHASE 2a

PILOT

GT1 naïve, N=11 ABT-450/r + ABT-072 + RBV

CO-PILOT

GT1 naïve/exp, N=50 ABT-450/r + ABT-333 + RBV

PHASE 2b

AVIATOR

GT1 naïve/exp, N=571 ABT-450/r \pm ABT-267 \pm ABT-333 \pm RBV

NAVIGATOR

GT1, 2, 3 naïve, N=60 ABT-450/r + ABT-267 \pm RBV

PEARL-I

GT1b, 4, naïve/exp, N=320 ABT-450/r + ABT-267 \pm RBV

PHASE 3

SAPPHIRE-I

GT1 naïve, N=600 ABT-450/r/ABT-267 + ABT-333 + RBV

SAPPHIRE-II

GT1 exp, N=400 ABT-450/r/ABT-267 + ABT-333 + RBV

PEARL-II

GT1b exp, N=210 ABT-450/r/ABT-267 + ABT-333 \pm RBV

PEARL III

GT1b naive, N=400 ABT-450/r/ABT-267 + ABT-333 \pm RBV

PEARL-IV

GT1a naïve, N=300 ABT-450/r/ABT-267 + ABT-333 \pm RBV

SPECIAL PATIENT POPULATIONS

TURQUOISE-I (HIV/HCV)

GT1 naïve/exp, N=300 ABT-450/r/ABT-267 + ABT-333 + RBV

TURQUOISE-II

(Compensated Cirrhosis)

GT1 naïve/exp, N=300 ABT-450/r/ABT-267 + ABT-333 + RBV

M12-999

(Liver Transplant Recipients)

GT1 naïve/exp, N=30 ABT-450/r/ABT-267 + ABT-333 + RBV

ADDITIONAL STUDIES

M13-101 (Virologic Failures)

GT1 failures in previous AbbVie trial, N=150 ABT-450 + RTV + ABT-267 + PegIFN + RBV

M13-102 (Long-term Follow-up) GT1, N=500

3D PROVIDES HIGH ACHIEVEMENT OF SVR-12/24

Phase 2 data demonstrate consistently high SVR and low relapse rates among all patient types

	M11-652: Response Rates, All Groups, N=571					SVR ₂₄ *	Breakthrough/
	Ν	Regimen/D	Duration		%	%	Relapse
4	80	ABT-450 ABT-267	ABT-333 RBV		89	88	0/10
Freatment-naïve	41	ABT-450	ABT-333 RBV		85	83	1/4
	79	ABT-450 ABT-267	RBV		91	89	1/8
	79	ABT-450 ABT-267 /	ABT-333		90	87	1/5
Tre	79	ABT-450 ABT-267	ABT-333 RBV		99	96	0/1
	80	ABT-450 ABT-267	ABT-333 RBV		93	90	0/2
ļ	<u> </u>) 	Wk 8 ₁ Wk 12	2 Wk 24			
7	45 45 45 43	ABT-450 ABT-267	RBV		89	89	0/5
	5 45	ABT-450 ABT-267 A	ABT-333 RBV		93	93	3/0
	6 43	ABT-450 ABT-267	ABT-333 RBV		98	95	1/0
			we not returned for >24 weeks	and are counted as virologic fo	vilures for SV	\/D	

^{*8} patients with SVR₁₂ have not returned for >24 weeks and are counted as virologic failures for SVR₂₄

Summary

- Chronic hepatitis C is a silent killer
- Current treatments have limitations: There is unmet need for
 - Better Tolerability
 - Better Virological response
- Future treatments fulfill current unmet need
 - Oral triple combination
 - Less side effects
 - Treatment success

Thank you for listening

rsothiratnam@gmail.com